翻訳と辞書
Words near each other
・ Modular decomposition
・ Modular design
・ Modular elliptic curve
・ Modular Engine Management System
・ Modular equation
・ Modular Equipment Transporter
・ Modular exponentiation
・ Modular form
・ Modular function deployment
・ Modular group
・ Modular Handgun System
・ Modular Integrated Communications Helmet
・ Modular invariance
・ Modular invariant
・ Modular invariant theory
Modular lambda function
・ Modular lattice
・ Modular Lie algebra
・ Modular Man
・ Modular Man (disambiguation)
・ Modular Mining Systems
・ Modular multiplicative inverse
・ Modular music
・ Modular neural network
・ Modular Neutron Array
・ Modular ocean model
・ Modular Optoelectronic Multispectral Scanner
・ Modular origami
・ Modular process skid
・ Modular product of graphs


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Modular lambda function : ウィキペディア英語版
Modular lambda function
In mathematics, the elliptic modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve ''X''(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve \mathbb/\langle 1, \tau \rangle, where the map is defined as the quotient by the () involution.
The q-expansion, where q = e^ is the nome, is given by:
: \lambda(\tau) = 16q - 128q^2 + 704 q^3 - 3072q^4 + 11488q^5 - 38400q^6 + \dots.
By symmetrizing the lambda function under the canonical action of the symmetric group ''S''3 on ''X''(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group SL_2(\mathbb), and it is in fact Klein's modular j-invariant.
==Modular properties==
The function \lambda(\tau) is invariant under the group generated by〔Chandrasekharan (1985) p.115〕
: \tau \mapsto \tau+2 \ ;\ \tau \mapsto \frac \ .
The generators of the modular group act by〔Chandrasekharan (1985) p.109〕
: \tau \mapsto \tau+1 \ :\ \lambda \mapsto \frac \, ;
: \tau \mapsto -\frac \ :\ \lambda \mapsto 1 - \lambda \ .
Consequently, the action of the modular group on \lambda(\tau) is that of the anharmonic group, giving the six values of the cross-ratio:〔Chandrasekharan (1985) p.110〕
: \left\lbrace , \frac, \frac, \frac, 1-\lambda } \right\rbrace \ .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Modular lambda function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.